
PHYSICAL REVIEW E 66, 066309 ~2002!
Scenarios for the onset of convection close to the critical point
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We perform a theoretical analysis of the onset of convection in a layer of near-critical3He submitted to an
unsteady bottom heating. A theoretical model previously presented@P. Carlès, Physica D147, 36 ~2000!# is
adapted to the corresponding physical conditions, and a method is proposed to solve the associated equations.
We predict, for different intensities of heating and different initial temperatures, when convection will start and
what will be the shape of the dominant growing perturbations. A systematic parametric analysis shows that the
onset of convection in a supercritical fluid can take place following four distinct scenarios, depending on the
initial temperature and the intensity of the heating. Two of these scenarios are entirely specific to near-critical
fluids, being impossible to observe in classical Boussinesq fluids.
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Fluids near the liquid-vapor critical point are at the sa
time dense and highly compressible. The onset of convec
in such systems is a very active subject of research, ma
for two reasons. First, the hydrodynamics of these fluids
an interesting problem in itself, owing to their numerous
dustrial applications as well as their importance in terms
fundamental physics. But also, several authors have sh
in recent years that supercritical fluids, under certain con
tions, could be used as scaled-down laboratory models
large geophysical flows@1–4#. This last consideration ha
been a strong incentive for the study of gravity-linked ph
nomena in supercritical fluids such as internal gravity wa
and the Rayleigh-Be´nard convection. The results present
in this paper aim at shedding some light on the sequenc
events which drive a bottom-heated supercritical fluid la
into the convective regime.

It has been shown in recent years that fluids near t
critical point are subjected to a specific temperature re
ation mechanism called the piston effect~PE!, which be-
comes increasingly efficient as the critical point is a
proached @5–8#. This mechanism can be described
follows: when a sample of near-critical fluid confined in
fixed-volume container is locally heated, a thermal bound
layer forms close to the heated zone; due to the large c
pressibility of the fluid, this boundary layer expands and a
as a piston, driving an isentropic compression of the res
the fluid; as a consequence, the temperature in the w
sample rises in a rapid and homogeneous way. In the p
ence of gravity, the hot fluid in the boundary layer has
tendency to rise as a result of buoyancy forces, so th
subtle interplay takes place between PE and buoyancy-dr
convection. This interplay is the source of a great variety
behaviors as regards the Rayleigh-Be´nard stability of a fluid
close to the critical point, the problem under study here.

Rayleigh-Bénard stability of near-critical fluids was firs
studied in the pioneering works of Giterman and Steinb
@9#. Recently, a renewed interest for near-critical hydrod
namics drove experimenters, numericists, and theorists
revisiting this problem. Several experimental studies show
the relevance of Giterman and Steinberg’s first res
@10,2,11#, while a more concise theoretical approach of t
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stability problem was proposed by Carle`s and Ugurtas@12#.
Through all these works, it has been demonstrated that
criteria for the onset of convection in a supercritical flu
subjected to an adverse temperature gradient is

RaCorr.Rac , ~1!

where RaCorr is defined as the classical Rayleigh number,
which the temperature gradientdT/dz is replaced by
dT/dz1G. G is the adiabatic temperature gradient, defin
as G5rg(]T/]P)s . Rac is a critical Rayleigh number de
pending on the boundary conditions and having the sa
values as in the Boussinesq case@12,13#. The theoretical cri-
terion in Eq.~1! is based, however, on somewhat unphysi
initial conditions: the fluid is supposed to be in a state
stationary conduction, and the convective stability of th
initial state is explored. In real experiments however,
fluid is generally at a constant initial temperature and
gradually heated from the bottom, until eventually a stea
regime of conduction is reached. The transients obser
during this heating process~governed by PE close to th
critical point! may themselves be subjected to convect
instabilities. Consequently, the final regime of conduction
practically observed only in the stable case: in the unsta
case, convection ensues before this steady regime is rea
The theoretical models mentioned above@9,12#, based on
stationary initial conditions, are thus unable to describe
influence of PE on the onset of convection.

In order to go beyond these limitations, a stability analy
based on the more physical case of an unsteady bottom h
ing was proposed by Carle`s @14#, in which the competition
between PE and natural convection was studied in a qua
tative way. In the present work, we adapt this unstea
model to the case of a bottom-heated layer of near-crit
3He. We check the Rayleigh-Be´nard stability of the fluid
layer for different values of the initial temperature and f
different intensities of heating. Analyzing the morphology
the fluid flow generated by the growing perturbations in t
unstable cases, we identify four distinct scenarios which
scribe how convection sets in in a bottom-heated near-crit
fluid.
©2002 The American Physical Society09-1
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L. EL KHOURI AND P. CARLÈS PHYSICAL REVIEW E66, 066309 ~2002!
Let us first examine the model and its adaptation to
case of the3He layer. The specific parameters and bound
conditions used here are chosen so as to match the ch
teristics of the experiment of Kogan and co-workers@11,3#, a
choice which should make future experimental comparis
easier. We thus consider a supercritical layer of3He confined
between two infinite horizontal plates separated by a ga
length L51.06 mm. The fluid is initialy at critical density
(rc541.45 kg m23) and at a temperatureTi slightly above
the critical temperature (Tc53.316 K). The reduced tem
perature is defined in the usual way as«5(Ti2Tc)/Tc . The
temperature of the top plate is regulated atTi , and at a given
time a constant heat fluxq is applied at the bottom plate
This bottom-heating drives a PE flow in the fluid layer, a
the stability of this flow versus natural convection is an
lyzed for different values of« andq as time elapses.

The problem is first rewritten in nondimensional form u
ing the following variables and unknowns@with the space
variables (x,y,z), time t, and (u,v,w) the components o
velocity#:

T* 5T/Tc , P* 5P/Pc , r* 5r/rc ,

~u* ,v* ,w* !5~u,v,w!/Vre f , ~2!

~x* ,y* ,z* !5~x,y,z!/L t* 5tVre f /L,

with Vre f5h/(rcL) the speed of viscous diffusion~with eta
the shear viscosity!. The reason of this unusual referen
choice is explained in Ref.@12#. The PE flow~which is the
base flow of the present stability analysis! is found analyti-
cally like in Ref. @14# for the particular set of boundary con
ditions considered here: a prescribed heat flux at the bot
and a regulated temperature at the top. The associated
temperature profile is denoted byTB* (z* ,t* ). Small three-
dimensional perturbations are added to this base flow,
the nondimensional equations describing their evolution
shown to be@14# ~subscripts indicate partial derivatives an
stars have been omitted!

Dwt5bPDht1D2w, ~3!

t t52
1

Fr2
~TBz1g!w1

1

Pr
Dt, ~4!

with w the perturbation of vertical velocity andt the tem-
perature perturbation.bP52(Tc /rc)(]r/]T)P ~nondimen-
sional isobaric expansion coefficient!, Fr5Vre f /AgL
~Froude number!, Pr5hCP /l ~Prandtl number!, and g
5G(L/Tc) ~nondimensional adiabatic temperature gradie!.
Dh is the Laplacian operator taken in the horizontal planex,
y) only. With Eqs.~3! and ~4! are associated boundary co
ditions onw andt which describe the nature of the boun
aries~solid plates! and their thermal behavior~isothermal at
the top, with imposed heat flux at the bottom! ~see Chan-
drasekhar@13# for more details!. As can be seen in Eqs.~3!
and ~4!, the stability of the fluid layer is governed by th
specific temperature profile created by the piston effect.
example of such a profile is given in Fig. 1~c!. A typical
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two-boundary layers pattern is observed: a thermal bound
layer appears at the bottom, where the fluid is heated by
lower plate; this heating drives a PE which increases the b
temperature beyond that of the upper plate, and a sec
boundary layer appears on top of the cell where the fluid
cooled by the upper plate. The thermal configuration is th
potentially unstable in both of these layers@14#.

In order to solve Eqs.~3! and ~4! for the associated
boundary conditions, solutions are first decomposed in
horizontal plane as periodic Fourier components of wa
numberskx in the x direction andky in the y direction. The
time dependence of these Fourier modes is then assum
be exponential, an assumption equivalent to applying
classical hypothesis offrozen base flowto the PE base flow:
TB is assumed to be a function of a ‘‘slow’’ time parametert0
~the time at which the base flow is observed!, and the per-
turbations to be functions of a ‘‘fast’’ time variablet, inde-
pendent of t0. The application of this hypothesis in th
present context raises several complex issues which are
cussed in Ref.@14#. w andt are thus defined as

w~x,y,z,t !5w̃~z! es(t2t0)ei (kxx1kyy), ~5!

t~x,y,z,t !5 t̃~z!es(t2t0)ei (kxx1kyy), ~6!

and their governing equations become

s~w̃zz2k2w̃!5bPk2t̃1~w̃zzzz22k2w̃zz1k4w̃!, ~7!

st̃52
1

Fr2
FTBz~z,t01G#w̃1

1

Pr
~ t̃zz2k2t̃ !. ~8!

k5Akx
21ky

2 is the wave number of the perturbation,s its
growth rate. Equations~7! and~8! and the associated bound
ary conditions define an eigenvalue problem linkings andk
for a givent0. In order to solve this problem, the followin
numerical procedure is applied. The fluid cell is first d
cretized withN mesh points, and a 2N vectorV is defined as
V5„w̃(1/N), . . . ,w̃(1),t̃(1/N), . . . ,t̃(N)…. Equations ~3!
and~4! and the associated boundary conditions are then
cretized using finite differences for derivation operato
which finally yields the following relationship:

sAkV5BkV, ~9!

whereAk andBk are two (2N,2N) matrices, functions ofk
and t0 ~and of the nondimensional numbers characteriz
the physical problem!. Equation ~9! defines a generalized
eigenvalue linear problem, where thes’s are the generalized
eigenvalues~corresponding to the rates of growth of pertu
bations of wave vectork) associated with generalized eige
vectorsVs ~corresponding to the shape of the associated
locity and temperature perturbations!. Thus, at any given
time t0 during the heating, it is possible to check the stabil
of perturbations of any wave numberk and predict the shape
of the most unstable ones by looking at the correspond
eigenvectorVs . The time of onset of convectiontons can be
found as the first value oft0 for which there exists at leas
one value ofk leading to a growth rates with a positive real
9-2
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SCENARIOS FOR THE ONSET OF CONVECTION CLOSE . . . PHYSICAL REVIEW E 66, 066309 ~2002!
FIG. 1. Base temperature profiles~solid lines! and temperature perturbations~dotted lines! at the time of convection onset for eac
scenario~a!–~d!; ~temperature profiles are plotted in microkelvins while the amplitude of the perturbation is arbitrary!; associated tempera
ture fields shortly after the onset~a8) –~d8!; ~black is hot, white is cold, and only a 4L-wide portion of the infinite fluid layer is represented!;
the associated experimental conditions are detailed in the core of the text.
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part. The type of growing perturbations observed in the fl
layer at this moment can also be predicted: it is described
the associated eigenvectorVs , whose firstN components
represent the shape of the most unstable velocity pertu
tion w and lastN components represent the shape of
associated temperature perturbationt. The accuracy of this
procedure was checked on the basis of the class
Rayleigh-Bénard problem in Boussinesq fluids. The first fe
eigenmodes of the discrete system converged to the first
eigenmodes of the continuous system~as found in Ref.@13#!
whenN was increased. The accuracy was found satisfac
even for small values ofN ~a few tens!.

Using the procedure just described, we performed a s
tematic analysis of the stability of the3He layer for a wide
range of heat fluxesq and reduced temperatures«. For each
pair of parameters, we calculated the time of onsettons and
the shape of the most unstable perturbation~obtained from
the corresponding eigenvectorVs). The different types of
growing perturbations could be sorted into only four distin
classes, each class describing a possible scenario for the
sition from PE to convection.

Let us first define the critical heat fluxqc as the flux
which drives the fluid layer exactly on the convective thre
old when it reaches its final regime of steady conduction

Scenario (a): q close to qc any value of«. The first sce-
nario is observed when the heat flux is such that convec
ensues at a time when the upper and lower boundary la
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have already reached each other in their process of diffus
At this time, an almost constant temperature gradient is
tablished in the cell. The stability problem is then very sim
lar to that studied in Refs.@9,12#: the most unstable wave
numberk is of order 3 and the associated perturbation oc
pies the whole fluid layer. An example of the correspond
base temperature profileTB(z) and of the most unstable tem
perature perturbation is plotted in Fig. 1~a! for «50.1 and
q56.2231024 Wm22 ~which leads to tons512 s for k
53). In Fig. 1~a8) a temperature field has been drawn bas
on the superposition ofTB(z) and of the most unstable tem
perature perturbation@as defined in Eq.~6!, with a small
amplitude arbitrarily chosen#. This figure gives a visual idea
of the type of temperature field which should be observed
the fluid layer shortly after the onset. It would be interesti
to compare such plots with the temperature fields predic
by the numerical simulations of Chiwata and Onuki@15# or
Amiroudine and co-workers@16#.

Scenario (b): q close to qc @higher than in scenario (a)#,
any value of«. When the heat flux is a little higher than i
scenario~a!, convection sets in a short time before the tw
boundary layers meet. In this situation, both boundary lay
destabilize at the same time in a coupled manner: the m
unstable perturbation corresponds to a coupled pair of
turbations located in each boundary layer. The most unst
wave number is typically between 4 and 6. Examples of
base temperature profile and of the temperature perturba
9-3
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L. EL KHOURI AND P. CARLÈS PHYSICAL REVIEW E66, 066309 ~2002!
for such a scenario are plotted in Fig. 1~b! for «50.02, q
55.1 1024 W m22 ~which leads totons514 s for k54).
The temperature field shortly after the onset is drawn in F
1~b8): the coupled deformation of the two boundary laye
can be clearly observed.

Scenarios~a! and~b! are observed whenq is close toqc .
If q@qc , then convection starts when the boundary lay
still occupy only a fraction of the whole fluid cell. Bot
boundary layers are potentially unstable, the bottom one
ing always more unstable than the top one. Two cases
observed depending on the initial temperature, leading
scenarios~c! and ~d!.

Scenario (c): q@qc , «@0.01. Far from the critical point
the bottom boundary layer is unstable at the time of on
while the top one remains stable. Convection starts at
bottom and develops before the top boundary layer beco
unstable. The most unstable wave number is then of the
der of 3L/d, where D is the boundary layer thickness
tons. Such a situation is represented in Figs. 1~c! and~c8) for
«50.2 andq50.1 W m22 ~which leads totons50.2 s fork
53.8).

Scenario (d): q@qc , «&0.01. Close to the critical point
the top and bottom boundary layers are symmetrical and b
unstable at the time of onset: convection starts from the
and the bottom of the layer in a simultaneous way. The m
unstable wave number is, again, of the order of 3L/d, but
this time two unstable symmetric perturbations appear a
most the same time, one located in the bottom bound
layer and the other in the top one. These two modes of
turbations however are not coupled, unlike what happen
scenario~b!: each boundary layer behaves independently
if the other layer did not exist. This situation is represented
ys
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Fig. 1~d! and ~d8) for «50.01 andq53.331022 W m22

~which leads totons50.62 s fork511.5). Such a scenario
has recently been observed in numerical simulations of
der Waals fluids by Amiroudineet al. @16#.

Note that among the four possible scenarios, only s
narios ~a! and ~c! can be observed in fluids far from th
critical point for the same heating conditions. In scenar
~b! and~d! indeed, growing perturbations appear at the sa
time at the bottom and at the top of the fluid layer, althou
only the bottom is heated. Such a situation is possible o
thanks to PE: it can be observed only in the vicinity of t
critical point.

In conclusion, we have developed a theoretical model
analyzing the unsteady Rayleigh-Be´nard stability of near-
critical fluids layers and applied it to a set of paramet
matching recent experiments on3He @11,3#. The model en-
ables the prediction of the time of onset of convection and
the morphology of the fluid flow which follows. Four distinc
scenarios have been identified, describing how convec
sets in a bottom-heated supercritical fluid. Given an exp
mental setup, our model is able to predict if convection w
start during the bottom heating, when it will start, and whi
scenario will be observed at the onset. Experimental co
parisons with the results of Kogan and Meyer are prese
under way, and the transition between the scenarios i
(q,«) diagram is being investigated.
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tion of dispersion equations. We feel extremely indebted
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