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Scenarios for the onset of convection close to the critical point
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We perform a theoretical analysis of the onset of convection in a layer of near-cfideasubmitted to an
unsteady bottom heating. A theoretical model previously presdie@arie, Physica D147, 36 (2000] is
adapted to the corresponding physical conditions, and a method is proposed to solve the associated equations.
We predict, for different intensities of heating and different initial temperatures, when convection will start and
what will be the shape of the dominant growing perturbations. A systematic parametric analysis shows that the
onset of convection in a supercritical fluid can take place following four distinct scenarios, depending on the
initial temperature and the intensity of the heating. Two of these scenarios are entirely specific to near-critical
fluids, being impossible to observe in classical Boussinesq fluids.
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Fluids near the liquid-vapor critical point are at the samestability problem was proposed by Carland Ugurtag12].
time dense and highly compressible. The onset of convectioithrough all these works, it has been demonstrated that the
in such systems is a very active subject of research, mainlgriteria for the onset of convection in a supercritical fluid
for two reasons. First, the hydrodynamics of these fluids isubjected to an adverse temperature gradient is
an interesting problem in itself, owing to their numerous in-
dustrial applications as well as their importance in terms of R&*°"">Ra,, N
fundamental physics. But also, several authors have shown
in recent years that supercritical fluids, under certain condiwhere R&°"" is defined as the classical Rayleigh number, in
tions, could be used as scaled-down laboratory models favhich the temperature gradierdT/dz is replaced by
large geophysical flow$l—4]. This last consideration has dT/dz+G. G is the adiabatic temperature gradient, defined
been a strong incentive for the study of gravity-linked phe-as G=pg(dT/dP)s. Ra is a critical Rayleigh number de-
nomena in supercritical fluids such as internal gravity wavepending on the boundary conditions and having the same
and the Rayleigh-Beard convection. The results presentedvalues as in the Boussinesq c$2,13. The theoretical cri-
in this paper aim at shedding some light on the sequence dérion in Eq.(1) is based, however, on somewhat unphysical
events which drive a bottom-heated supercritical fluid layeiinitial conditions: the fluid is supposed to be in a state of
into the convective regime. stationary conduction, and the convective stability of this

It has been shown in recent years that fluids near theiinitial state is explored. In real experiments however, the
critical point are subjected to a specific temperature relaxfluid is generally at a constant initial temperature and is
ation mechanism called the piston effd&E), which be- gradually heated from the bottom, until eventually a steady
comes increasingly efficient as the critical point is ap-regime of conduction is reached. The transients observed
proached [5—8]. This mechanism can be described asduring this heating procesgoverned by PE close to the
follows: when a sample of near-critical fluid confined in a critical poin) may themselves be subjected to convective
fixed-volume container is locally heated, a thermal boundarynstabilities. Consequently, the final regime of conduction is
layer forms close to the heated zone; due to the large conpractically observed only in the stable case: in the unstable
pressibility of the fluid, this boundary layer expands and actsase, convection ensues before this steady regime is reached.
as a piston, driving an isentropic compression of the rest oThe theoretical models mentioned abdw12], based on
the fluid; as a consequence, the temperature in the whol&ationary initial conditions, are thus unable to describe the
sample rises in a rapid and homogeneous way. In the pregfluence of PE on the onset of convection.
ence of gravity, the hot fluid in the boundary layer has a In order to go beyond these limitations, a stability analysis
tendency to rise as a result of buoyancy forces, so that hased on the more physical case of an unsteady bottom heat-
subtle interplay takes place between PE and buoyancy-driveng was proposed by Cad¢14], in which the competition
convection. This interplay is the source of a great variety obetween PE and natural convection was studied in a quanti-
behaviors as regards the RayleighaBed stability of a fluid  tative way. In the present work, we adapt this unsteady
close to the critical point, the problem under study here. model to the case of a bottom-heated layer of near-critical

Rayleigh-Bmard stability of near-critical fluids was first He. We check the Rayleigh-Bard stability of the fluid
studied in the pioneering works of Giterman and Steinberdayer for different values of the initial temperature and for
[9]. Recently, a renewed interest for near-critical hydrody-different intensities of heating. Analyzing the morphology of
namics drove experimenters, numericists, and theorists intthe fluid flow generated by the growing perturbations in the
revisiting this problem. Several experimental studies showednstable cases, we identify four distinct scenarios which de-
the relevance of Giterman and Steinberg’s first resultscribe how convection sets in in a bottom-heated near-critical
[10,2,11, while a more concise theoretical approach of thefluid.
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Let us first examine the model and its adaptation to théwo-boundary layers pattern is observed: a thermal boundary
case of the’He layer. The specific parameters and boundaryayer appears at the bottom, where the fluid is heated by the
conditions used here are chosen so as to match the chardower plate; this heating drives a PE which increases the bulk
teristics of the experiment of Kogan and co-workiehi$,3], a  temperature beyond that of the upper plate, and a second
choice which should make future experimental comparisonboundary layer appears on top of the cell where the fluid is
easier. We thus consider a supercritical layefldé confined cooled by the upper plate. The thermal configuration is thus
between two infinite horizontal plates separated by a gap gbotentially unstable in both of these lay¢il].
lengthL=1.06 mm. The fluid is initialy at critical density In order to solve Eqs(3) and (4) for the associated
(pc=41.45 kgm 3) and at a temperaturg slightly above boundary conditions, solutions are first decomposed in the
the critical temperatureT(;=3.316 K). The reduced tem- horizontal plane as periodic Fourier components of wave
perature is defined in the usual waysas (T;—T.)/T.. The = numbersk, in the x direction andk, in they direction. The
temperature of the top plate is regulatedat and at a given time dependence of these Fourier modes is then assumed to
time a constant heat flug is applied at the bottom plate. be exponential, an assumption equivalent to applying the
This bottom-heating drives a PE flow in the fluid layer, andclassical hypothesis dfozen base flowo the PE base flow:
the stability of this flow versus natural convection is ana-Tg is assumed to be a function of a “slow” time parametigr
lyzed for different values o andq as time elapses. (the time at which the base flow is obseryednd the per-

The problem is first rewritten in nondimensional form us- turbations to be functions of a “fast” time variablg inde-
ing the following variables and unknownsiith the space pendent oft,. The application of this hypothesis in the
variables &,y,z), time t, and (,v,w) the components of present context raises several complex issues which are dis-

velocity]: cussed in Ref[14]. w and 7 are thus defined as
T*=T/T., P*=PIP,, p*=plp,, WXy, z,t) =W(z) e (- t0gi(x+kyy) (5)
(u* 0% ,W*)=(u,v,W)/V,es, 2 7(X,Y,z,t)=7(z)e” (" t)g (hxtky) (6)
(x*y*,z*)=(x,y,2)/L t* =tV /L, and their governing equations become
with V,et= 7/(pcL) the speed of viscous diffusigwith eta o (W,,— kK2W) = BpkZ7+ (W, ,,~ 2k2W,,+ k*W),  (7)

the shear viscosily The reason of this unusual reference

choice is explained in Ref12]. The PE flow(which is the _ 1 1
base flow of the present stability analysis found analyti- oT=— —[TBZ(z,toJr glw+ Fr(TZZ_ k7). (8
cally like in Ref.[14] for the particular set of boundary con- Fr*

ditions considered here: a prescribed heat flux at the botto . S
and a regulated temperature at the top. The associated base VK« Ky i the wave number of the perturbation, its

temperature profile is denoted B (z*,t*). Small three- growth rate. Equation&’) and(8) and the associated bound-

dimensional perturbations are added to this base flow, an Yy cor_1d|t|ons define an e|genvall_1e problem Imkmgmdk
or a givent,. In order to solve this problem, the following

the nondimensional equations describing their evolution ar ical q . lied. The fluid cell is first di
shown to bd 14] (subscripts indicate partial derivatives and numerical procedure Is applied. The fluid cell is first dis-
cretized withN mesh points, and aN2 vectorV is defined as

stars have been omitted - = - =
V=W(1/N), ... w(1),7(1/N), ...,7(N)). Equations (3)
Aw,= BpA,7+A%W, (3) and(4) and the associated boundary conditions are then dis-
cretized using finite differences for derivation operators,
1 1 which finally yields the following relationship:
7=~ —(Tg, @)W+ =Ar, 4
t Frz( Bz Q) Pr (4) oAV =BV, ©

with w the perturbation of vertical velocity antlthe tem-  whereA, andB, are two (2N,2N) matrices, functions ok
perature perturbation3p=—(T./p.)(dp/dT)p (nondimen- andt, (and of the nondimensional numbers characterizing
sional isobaric expansion coefficignt Fr=V,.;/\/gL  the physical problem Equation(9) defines a generalized
(Froude number Pr=#7Cp/\ (Prandtl number and g eigenvalue linear problem, where th&s are the generalized
=G(L/T.) (nondimensional adiabatic temperature gradient eigenvaluegcorresponding to the rates of growth of pertur-
Ay, is the Laplacian operator taken in the horizontal plaxe ( bations of wave vectdk) associated with generalized eigen-
y) only. With Eqgs.(3) and(4) are associated boundary con- vectorsV,, (corresponding to the shape of the associated ve-
ditions onw and = which describe the nature of the bound- locity and temperature perturbationsThus, at any given
aries(solid plate$ and their thermal behavidisothermal at timety during the heating, it is possible to check the stability
the top, with imposed heat flux at the bottpiisee Chan- of perturbations of any wave numbleand predict the shape
drasekhaf13] for more details As can be seen in Eq§3)  of the most unstable ones by looking at the corresponding
and (4), the stability of the fluid layer is governed by the eigenvectolV, . The time of onset of convectidy,s can be
specific temperature profile created by the piston effect. Adound as the first value df, for which there exists at least
example of such a profile is given in Fig(cL A typical  one value ok leading to a growth rate- with a positive real
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FIG. 1. Base temperature profilésolid lineg and temperature perturbatiofdotted lineg at the time of convection onset for each
scenario(@—(d); (temperature profiles are plotted in microkelvins while the amplitude of the perturbation is ajbiassyciated tempera-
ture fields shortly after the ons&t’')—(d’); (black is hot, white is cold, and only d_4wide portion of the infinite fluid layer is represened
the associated experimental conditions are detailed in the core of the text.

part. The type of growing perturbations observed in the fluichave already reached each other in their process of diffusion.
layer at this moment can also be predicted: it is described byt this time, an almost constant temperature gradient is es-
the associated eigenvectdt,, whose firstN components tablished in the cell. The stability problem is then very simi-
represent the shape of the most unstable velocity perturbdar to that studied in Refd.9,12]: the most unstable wave
tion w and lastN components represent the shape of thenumberk is of order 3 and the associated perturbation occu-
associated temperature perturbationThe accuracy of this pies the whole fluid layer. An example of the corresponding
procedure was checked on the basis of the classicdlase temperature profilgs(z) and of the most unstable tem-
Rayleigh-Baard problem in Boussinesq fluids. The first few perature perturbation is plotted in Fig(al for e=0.1 and
eigenmodes of the discrete system converged to the first fegy=6.22x 10" Wm~2 (which leads tot,,c=12 s for k

eigenmodes of the continuous systém found in Ref[13]) =3). In Fig. 1@’y a temperature field has been drawn based
whenN was increased. The accuracy was found satisfactorgn the superposition ofg(z) and of the most unstable tem-
even for small values dfl (a few tens. perature perturbatioflas defined in Eq(6), with a small

Using the procedure just described, we performed a sysamplitude arbitrarily chosgnThis figure gives a visual idea
tematic analysis of the stability of théHe layer for a wide of the type of temperature field which should be observed in
range of heat fluxeq and reduced temperatures For each the fluid layer shortly after the onset. It would be interesting
pair of parameters, we calculated the time of origgfand  to compare such plots with the temperature fields predicted
the shape of the most unstable perturbafiobtained from by the numerical simulations of Chiwata and On{kb] or
the corresponding eigenvectdt,)). The different types of Amiroudine and co-workergl6].
growing perturbations could be sorted into only four distinct Scenario (b) g close to g [higher than in scenario (3)
classes, each class describing a possible scenario for the treary value ofs. When the heat flux is a little higher than in
sition from PE to convection. scenario(a), convection sets in a short time before the two

Let us first define the critical heat flug. as the flux boundary layers meet. In this situation, both boundary layers
which drives the fluid layer exactly on the convective thresh-destabilize at the same time in a coupled manner: the most
old when it reaches its final regime of steady conduction. unstable perturbation corresponds to a coupled pair of per-

Scenario (a) g close to g any value ofe. The first sce- turbations located in each boundary layer. The most unstable
nario is observed when the heat flux is such that convectiomave number is typically between 4 and 6. Examples of the
ensues at a time when the upper and lower boundary layetsmse temperature profile and of the temperature perturbation

066309-3



L. EL KHOURI AND P. CARLES PHYSICAL REVIEW E66, 066309 (2002

for such a scenario are plotted in Figbllfor e=0.02, q Fig. 1(d) and (d’y for e=0.01 andq=3.3x10 > Wm 2
=5.110*Wm™2 (which leads tot,,c=14 s fork=4).  (which leads tot,,s=0.62 s fork=11.5). Such a scenario
The temperature field shortly after the onset is drawn in Fighas recently been observed in numerical simulations of van
1(b'): the coupled deformation of the two boundary layersder Waals fluids by Amiroudinet al. [16].
can be clearly observed. Note that among the four possible scenarios, only sce-
Scenarioga) and(b) are observed wheqis close toq . narios (a) and (c) can be observed in fluids far from the
If g>q., then convection starts when the boundary |ayer5cr|t|cal point for the same heating qondltlons. In scenarios
still occupy only a fraction of the whole fluid cell. Both (P) and(d) indeed, growing perturbations appear at the same
boundary layers are potentially unstable, the bottom one bdiMe at the bottom and at the top of the fluid layer, although
ing always more unstable than the top one. Two cases al%qulzhe bottom is hetz;atedb Suchda S'fu‘"’.‘t'oﬂ is possible ohnly
observed depending on the initial temperature, leading té anks to PE: it can be observed only in the vicinity of the

scenariogc) and (d) ritical point.
i ' . . In conclusion, we have devel theoretical model for
Scenario (¢) >0, £50.01. Far from the critical point, conclusion, we have developed a theoretical model fo

; . analyzing the unsteady Rayleigh+Bed stability of near-
the bottom boundary layer is unstable at the time of ons€f i< fiuids layers and applied it to a set of parameters

while the top one remains stable. Convection starts at thﬁwatching recent experiments Giie [11,3). The model en-
bottom and develops before the top bounda_ry layer becomeg,jes the prediction of the time of onset of convection and of
unstable. The most unstable wave number is then of the Oty 1 6rphology of the fluid flow which follows. Four distinct
der of 3./6, whereA is the boundary layer th|ck,ness at gcenarios have been identified, describing how convection
tons Such a situation |§2repre_sented in Fige) Bnd(c’) for g5 i 4 bottom-heated supercritical fluid. Given an experi-
e=0.2.andq=0.1 Wm ~ (which leads tdtons=0.2 s fork  enta| setup, our model is able to predict if convection will
=3.8). ) . ) start during the bottom heating, when it will start, and which
Scenario (d)q>dc, £=0.01. Close to the critical point, gcenario will be observed at the onset. Experimental com-

the top and bottom boundary layers are symmetrical and both,risons with the results of Kogan and Meyer are presently
unstable at the time of onset: convection starts from the top,qer way, and the transition between the scenarios in a

and the bottom of the Iayer in a simultaneous way. The mos(qyg) diagram is being investigated.

unstable wave number is, again, of the order bf & but

this time two unstable symmetric perturbations appear at al- We would like to acknowledge Dr. Ivan Delbende from
most the same time, one located in the bottom boundariIMSI (Orsay, Francefor his fruitful advice on the resolu-
layer and the other in the top one. These two modes of petion of dispersion equations. We feel extremely indebted to
turbations however are not coupled, unlike what happens iRrofessor Horst Meyer and Dr. Andrei Kogan for regular
scenario(b): each boundary layer behaves independently, adiscussions about their experimental results and for commu-
if the other layer did not exist. This situation is represented imicating data orfHe.
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